| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101 |
- dataFile0="../example_stat_report0.txt";
- dataFile1="../example_stat_report1.txt";
- graphSize=[720,860];
- function strOfVals=readStrOfFlts(dataFile)
- res=[]; n=1;
- while(mgetstr(1,dataFile)<>ascii(10))
- res(n)=mfscanf(1,dataFile,"%f"); n=n+1;
- end
- strOfVals=res;
- endfunction
- function dataN=readFileFunc(fileName)
- dat.fileName=fileName;
- dataFile=mopen(fileName,'rb');
- for i=1:1:9
- execstr([strcat(["dat.",mfscanf(1,dataFile,"%s"),..
- "=mfscanf(1,dataFile,""%f"");"])]);
- end
- for i=1:1:9
- execstr([strcat(["dat.",mfscanf(1,dataFile,"%s"),..
- "=readStrOfFlts(dataFile);"])]);
- end
- mclose(dataFile);
- dataN=dat;
- endfunction
- function mnL=mainLeg(dat)
- mnL=[strcat(["Dim:",string(dat.Dimensionality),..
- "; Known spheres:",string(dat.Number_of_known_spheres),..
- "; Mult:",string(dat.Multiplier),..
- "; Runs:",string(dat.Number_of_runs),";"]),..
- strcat(["Uncertainties:[",..
- string(dat.Start_uncertainty),", ",..
- string(dat.End_uncertainty),"], increment:",..
- string(dat.Uncertainty_incr),"; "]),..
- strcat(["Samples:",..
- string(dat.Samples_for_one_uncertainty_value),..
- " x Uncertainties; ",..
- "Statistical discretisation:",..
- string(dat.Statistical_discretisation)," "])];
- endfunction
- function gw=DrawPlotFor(windowsIdx,postfix,title)
- gw=scf(graphWindows(windowsIdx)); clf();
- xlfont(strcat(["../../documentation/fonts/cm-unicode-0.7.0/",..
- "CMU_Typewriter_Text-Medium.otf"]),0);
- xtitle(title,"Sensor uncertainty","Expected value");
- cidx=(length(gw.color_map)/3)+1;
- gw.color_map(cidx,1:3)=0.5; ax0=gca();
- ax0.grid=[cidx,cidx]; ax0.grid_style=[9,9]; ax0.grid_thickness=[1,1];
- ax0.filled="off"; ax0.font_style=0;ax0.font_size=3;
- ax0.title.font_style=0; ax0.title.font_size=4;
- ax0.x_label.font_style=0; ax0.x_label.font_size=3;
- ax0.y_label.font_style=0; ax0.y_label.font_size=3;
- execstr([strcat(["yVals=data0.Expected_",postfix])]);
- cEE0=plot(data0.Sensor_uncertainty,yVals,'Color','#0000aa');
- cEE0.thickness=2; cEE0.line_mode="on";
- cS=plot([0],[0]); cS.line_mode="off";cS=plot([0],[0]); cS.line_mode="off";
- execstr([strcat(["yVals=data0.Expected_",postfix,"+",..
- "data0.Sigma_",postfix])]);
- cSE0=plot(data0.Sensor_uncertainty,yVals,'Color','#5555c7');
- cSE0.thickness=2; cSE0.line_mode="on"; cSE0.line_style=3;
- execstr([strcat(["yVals=data0.Min_",postfix])]);
- cMinE0=plot(data0.Sensor_uncertainty,yVals,'Color','#5555c7');
- cMinE0.thickness=2; cMinE0.line_mode="on"; cMinE0.line_style=7;
- execstr([strcat(["yVals=data1.Expected_",postfix])]);
- cEE1=plot(data1.Sensor_uncertainty,yVals,'Color','#aa0000');
- cEE1.thickness=2; cEE1.line_mode="on";
- cS=plot([0],[0]); cS.line_mode="off";cS=plot([0],[0]); cS.line_mode="off";
- execstr([strcat(["yVals=data1.Expected_",postfix,"+",..
- "data1.Sigma_",postfix])]);
- cSE1=plot(data1.Sensor_uncertainty,yVals,'Color','#c75555');
- cSE1.thickness=2; cSE1.line_mode="on"; cSE1.line_style=3;
- execstr([strcat(["yVals=data1.Min_",postfix])]);
- cMinE1=plot(data1.Sensor_uncertainty,yVals,'Color','#c75555');
- cMinE1.thickness=2; cMinE1.line_mode="on"; cMinE1.line_style=7;
- execstr([strcat(["yVals=data0.Max_",postfix])]);
- cMaxE0=plot(data0.Sensor_uncertainty,yVals,'Color','#5555c7');
- cMaxE0.thickness=2;cMaxE0.line_mode="on"; cMaxE0.line_style=7;
- execstr([strcat(["yVals=data1.Max_",postfix])]);
- cMaxE1=plot(data1.Sensor_uncertainty,yVals,'Color','#c75555');
- cMaxE1.thickness=2; cMaxE1.line_mode="on"; cMaxE1.line_style=7;
- legend(ax0,mainLeg(data0),"Expected+StdDeviation","min/max",..
- mainLeg(data1),"Expected+StdDeviation","min/max",-6);
- endfunction
- data0=readFileFunc(dataFile0);
- data1=readFileFunc(dataFile1);
- if exists("graphWindows")==0 for i=1:1:2 graphWindows(i)=scf(); end end
- /* expected error */
- DrawPlotFor(1,"err","Expected Error Value");
- obj=gcf(); obj.figure_size=graphSize; obj.children.margins(3)=0.05;
- obj.children.margins(4)=obj.children.margins(4)-2*obj.children.margins(3);
- obj.anti_aliasing="16x";
- xs2png(obj,"errors.png");
- xs2svg(obj,"errors.svg");/* add "fill-opacity:0;" to svg-background */
- /* expected solves */
- DrawPlotFor(2,"solves","Expected Solves");
- obj=gcf(); obj.figure_size=graphSize; obj.children.margins(3)=0.05;
- obj.children.margins(4)=obj.children.margins(4)-2*obj.children.margins(3);
- obj.anti_aliasing="16x";
- xs2png(obj,"solves.png");
- xs2svg(obj,"solves.svg");/* add "fill-opacity:0;" to svg-background */
|